Effects of NeuroBike Cycling on EEG Brain Activity and Mathematical Performance: An Intervention Study

Authors

  • Alexander John Johannes Gutenberg University of Mainz
  • Diana Henz Johannes Gutenberg University of Mainz
  • Wolfgang Schöllhorn Johannes Gutenberg University of Mainz

Keywords:

brain functions, motor control, physical activity, cognition, mathematic performance

Abstract

The general purpose of the study was to promote the research on effects of physical activity on mathematical performance and brain functions, which is of particular interest regarding children’s education as well as for all adults. Several studies have identified an influence of cycling on cognitive processes and brain activity. In the present study, we investigated effects of cycling training on a special bicycle on spontaneous EEG brain activity and on mathematical performance of young adults. Participants performed different interventions (special bicycle - NeuroBike, common bicycle, daily activity) in a two-week intervention with three 20-minute training sessions per week. Spontaneous EEG was recorded before and after each training condition at rest as well as during different mathematical tests (algebra, arithmetic, geometry) before and after the two-week intervention. Behavioral data show reduced mathematical performance in geometry after the NeuroBike and common bicycle intervention in comparison to daily activity. EEG data reveal increased temporal and occipital theta power, occipital alpha power, and parietal and occipital beta power after the two week intervention without acute influence of NeuroBike cycling at rest. Repeated NeuroBike training lead to increased frontal power in all frequency bands as well as temporal theta and alpha power during algebra performance. The results indicate that continuous training on a NeuroBike fosters a beneficial brain state for learning at resting state, but does not lead instantaneously to an optimum brain state for active spatial processing in mathematical problem solving.

Downloads

Download data is not yet available.

References

Barrouillet, P. & Lepine, R. (2005). Working memory and children's use of retrieval to solve addition problems. Journal of experimental child psychology, 91(3), 183-204. http://doi.org/10.1016/j.jecp.2005.03.002.

Birkel, P., Schein, S. A. & Schumann, H. (2002). Bausteine-Test [Bricks-test]. Hogrefe: Göttingen.

Bull, R. & Scerif, G. (2001). Executive functioning as a predictor of children's mathematics ability: inhibition, switching, and working memory. Developmental neuropsychology, 19(3), 273-293. http://doi.org/10.1207/S15326942DN1903_3.

Coe, D. P., Pivarnik, J. M., Womack, C. J., Reeves, M. J. & Malina, R. M. (2006). Effect of physical education and activity levels on academic achievement in children. Medicine and Science in Sports and Exercise, 38(8), 1515–1519. http://doi.org/10.1249/01.mss.0000227537.13175.1b.

Colcombe, S. & Kramer, A. F. (2003). Fitness Effects on the Cognitive Function of Older Adults A Meta-Analytic Study. Psychological Science, 14(2), 125–130. http://doi.org/10.1111/1467-9280.t01-1-01430.

Cox, E., O’Dwyer, N., Cook, R., Vetter, M., Cheng, H. L., Rooney, K. & O’Connor, H. (2015). Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review. Journal of Science and Medicine in Sport. http://doi.org/10.1016/j.jsams.2015.09.003.

Crabbe, J. B. & Dishman, R. K. (2004). Brain electrocortical activity during and after exercise: A quantitative synthesis. Psychophysiology, 41 (4), 563 – 574.

Daldrup, T., Hartung, B., Maatz, R., Mindiashvili, N., Roth, E. H., & Schwender, H. (2014). Grenzwerte für absolute Fahruntüchtigkeit bei Radfahrern [Critical values for absolute driving disability of cyclists]. Forschungsbericht/Unfallforschung der Versicherer (UDV), Reihe Fahrzeugsicherheit, 28.

Esteban-Cornejo, I., Tejero-Gonzalez, C. M., Sallis, J. F. & Veiga, O. L. (2015). Physical activity and cognition in adolescents: A systematic review. Journal of Science and Medicine in Sport, 18(5), 534–539. http://doi.org/10.1016/j.jsams.2014.07.007.

Etnier, J. L., Salazar, W., Landers, D. M., Petruzzello, S. J., Han, M. & Nowell, P. (1997). The Influence of Physical Fitness and Exercise Upon Cognitive Functioning: A Meta- Analysis. Journal of Sport & Exercise Psychology, 19, 249–277.

Etnier, J. L. & Sibley, B. A. (2003). The Relationship Between Physical Activity and Cognition in Children: A Meta-Analysis. Pediatric Exercise Science, 15, 243–256.

Filloy, E., Rojano, T. & Puig, L. (2008). Educational algebra. New York: Springer.

Frenzel, A. (2004). Der SNAIX Bewegungstrainer – psychologische Analysen zu einem neuen Sportgerät [Snaix Movementtrainer – psychological analysis of a new sports equipment]. Accessed January 2, 2016 http://www.snaix.com/snaix/data/gutachten/uni_humboldt_2- 04_de.php?lang=de&cat=home.

Henz, D., Schöllhorn, W. & Oldenburg, R. (2013). Bessere Mathematikleistungen durch bewegtes Sitzen? Eine EEG-Studie zum Zusammenhang von mentaler und körperlicher Bewegung [Improved mathematic performance according to moving sitting? EEG-study on the relation between mental and physical movement]. Accessed October 29, 2015 https://eldorado.tu-dortmund.de/bitstream/2003/33224/1/BzMU14- 4ES-Henz-292.pdf.

Hillman, C. H., Erickson, K. I. & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58–65. http://doi.org/10.1038/nrn2298.

Jasper, F. & Wagener, D. (2013). M-PA. Mathematiktest für die Personalauswahl [Mathematic-test for staff selection]. Göttingen: Hogrefe.

Lienert, G. A., Hofer, M. & Beleites, J. (2014). Mathematiktest für Abiturienten und Studienanfänger (M-T-A-S) [Mathematic-test for high school graduates and college beginner]. In Wirtz, M. A. (Ed.), Dorsch – Lexikon der Psychologie (17. ed., p. 1059). Bern: Verlag Hans Huber.

Padberg, F. (2007). Didaktik der Arithmetik [Didactic of arithmetic]. München: Spektrum.

Passolunghi, M. & Siegel, L. (2001). Short-term memory, working memory, and inhibitory control in children with difficulties in arithmetic problem solving. Journal of experimental child psychology, 80(1), 44-57. http://doi.org/10.1006/jecp.2000.2626.

Schöllhorn, W., Michelbrink, M., Beckmann, H., Diekjobs, T., Kirschner, E. M. & Welminski, D. (2005). Unterschiedliche Trainingsmethoden zum Erlernen des SNAIX-Fahrens. Untersuchung zur Veränderung des Bewegungsverhaltens auf dem SNAIX infolge zweier unterschiedlicher Trainingsmethoden [Different training methods of SNAIX-driving. Examination of the movement behaviour on the SNAIX as a result of two different training methods]. Accessed January 2, 2016 http://www.snaix.com/snaix/data/gutachten/Originale/Uni- muenster_Trainingsprojekt-05.pdf.

Serrien, D. J., Ivry, R. B. & Swinnen, S. P. (2006). Dynamics of hemispheric specialization and integration in the context of motor control. Nature Reviews Neuroscience, 7(2), 160–166. http://doi.org/10.1038/nrn1849.

Steiner, V. (2013). Exploratives Lernen: Der persönliche Weg zum Erfolg. Eine Anleitung für Studium, Beruf und Weiterbildung [Explorative learning: The personal path to success. A guide for study, occupation and further education]. Zürich: Pendo.

Sun, T. & Walsh, C. A. (2006). Molecular approaches to brain asymmetry and handedness. Nature Reviews Neuroscience, 7(8), 655–662. http://doi.org/10.1038/nrn1930.

Swanson, L. & Kim, K. (2007). Working memory, short-term memory, and naming speed as predictors of children's mathematical performance. Intelligence, 35(2), http://doi.org/151-168. 10.1016/j.intell.2006.07.001.

Zschocke, S. & Hansen, H. (2012). Klinische Elektroenzephalographie [Clinical electroencephalography]. Berlin, Heidelberg: Springer.

Additional Files

Published

2017-04-01

How to Cite

John, A., Henz , D. ., & Schöllhorn, W. . (2017). Effects of NeuroBike Cycling on EEG Brain Activity and Mathematical Performance: An Intervention Study. Psycho-Educational Research Reviews, 6(1), 67–80. Retrieved from https://perrjournal.com/index.php/perrjournal/article/view/286